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Higher universes and inductive-recursive definitions

The super-universe (Palmgren)

The Mahlo universe (Setzer)

General inductive-recursive definitions (Dybjer, Setzer)

Are they constructive in the sense of Martin-Löf 1979? Are they
predicative in Martin-Löf’s extended sense?

Palmgren’s paradox: adding a natural elimination rule for the
Mahlo universe yields an inconsistency.



Martin-Löf type theory 1986

Two levels:

Theory of types (LF) Dependent type theory with dependent function
types (x : σ)→ τ, a type Set, and for each A : Set a type
A of elements.

Theory of sets Constants for standard set formers
Π,Σ,0,1,2,N,W, Id, . . . and their introductory and
eliminatory constants. Equations for the computation
rules for eliminatory constants.

The theories IR, IIRD (Dybjer, Setzer 1999, etc) are based on LF. The
theory TTM of this talk is also based on LF.



The external Mahlo universe Set

A super-universe is a universe closed under the next-universe operator

(−)+ : Fam(Set)→ Fam(Set)

Similarly, there are super-super-universes, etc.
A further generalization is to build universes (U f0 f1,T f0 f1) closed
under arbitrary family operators

f : Fam(Set)→ Fam(Set)

This turns Set into a Mahlo universe with (U f0 f1,T f0 f1) as
subuniverses, where f is split into two components:

f0 : (X0 : Set)→ (X0→ Set)→ Set

f1 : (X0 : Set)→ (X1 : X0→ Set)→ f0 X0 X1→ Set



Subuniverses of Set in LF

Introduction rules for the codes (c0,c1) for the family operator (f0, f1).
We omit the arguments for the family operator parameter.

c0 : (x0 : U f0 f1)→ (T f0 f1 x0→ U f0 f1)

→ U f0 f1
c1 : (x0 : U f0 f1)→ (x1 : T f0 f1 x0→ U f0 f1)

→ T f0 f1(c0 x0 x1)→ U f0 f1

Equality rules:

T f0 f1 (c0 x0 x1) = f0 (T f0 f1 x0)((T f0 f1) ◦ x1)

T f0 f1 (c1 x0 x1 t) = f1 (T f0 f1 x0)((T f0 f1) ◦ x1) t

We also have constructors for codes for the standard set formers. We
call the resulting theory TTM.



Mahlo is predicative, after all

We suggest an answer to this question by
building a “predicative” (inductively generated) model of TTM in
classical set theory (ZFC) extended with

a Mahlo cardinal M
and an inaccessible cardinal I > M

providing meaning explanations for TTM extending and slightly
modifying those in Martin-Löf 1979.



Inductive definitions via rule sets (Aczel 1977)

A rule on a base set U is a pair of sets u ⊆ U and v ∈ U written

u
v

Let Φ be a set of rules on U. A set w ⊆ U is Φ-closed iff

u
v
∈ Φ and u ⊆ w implies v ∈ w .

There is a least Φ-closed set

I (Φ) =
⋂
{w ⊆ U | w Φ−closed},

the set inductively defined by Φ. (An impredicative definition!)



Inductive definition of Tarski-style subuniverses U f0 f1
Let M be a Mahlo cardinal and

f : F am(VM)→ F am(VM)

The Mahlo property implies that there is inaccessible κf < M such that
f restricts to a function

F am(Vκf )→ Fam(Vκf )

The following rule set on Vκf ×Vκf inductively generates the graph of
the decoding function T f0 f1 with domain U f0 f1:

{{(x ,X)}∪{(y z,Y z)|z ∈ X}
(c0 x y , f0 X Y )

| x ,X ∈ Vκf ,y ,Y : X → Vκf }

∪

{{(x ,X)}∪{(y z,Y z)|z ∈ X}
(c1 x y t, f1 X Y t)

| x ,X ∈ Vκf ,y ,Y : X → Vκf , t ∈ f0 X Y}

∪
...



Inductive definition of the Mahlo universe Set

The following rule set on VM inductively generates Set :

{

{f0 (T f0 f1 x0)((T f0 f1)◦ x1) | (x0,x1) ∈ F am(U f0 f1)}
∪ {f1 (T f0 f1 x0)((T f0 f1)◦ x1) t | (x0,x1) ∈ F am(U f0 f1), t ∈ f0 (T f0 f1 x0)((T f0 f1)◦ x1)}

U f0 f1

| f : F am(VM)→ F am(VM)}

∪

...

We add U f0 f1 to Set whenever we already know that f (family)
composed with T f0 f1 yields a function

F am(U f0 f1)→ F am(Set)

This yields a model of TTM.



Meaning explanations for TTM

We assume the canonical forms, computation rules, and matching
conditions for the standard set formers (Martin-Löf 1979) adapted to
the logical framework version (Martin-Löf 1986). We add:

New canonical forms:
U f0 f1

c0 a0 a1,c1 a0 a1 b

New computation rules:

T f0 f1 (c0 x0 x1) = f0 (T f0 f1 x0)((T f0 f1) ◦ x1)

T f0 f1 (c1 x0 x1 t) = f1 (T f0 f1 x0)((T f0 f1) ◦ x1) t



Matching conditions for U f0 f1 : Set

This judgment is valid under the conditions that

f0 (T f0 f1 x0)((T f0 f1) ◦ x1) : Set

f1 (T f0 f1 x0)((T f0 f1) ◦ x1) t : Set

in the context

x0 : U f0 f1,x1 : T f0 f1 x0→ U f0 f1, t : f0 (T f0 f1 x0)((T f0 f1) ◦ x1)

Note the difference between this condition and the assumption of
U-formation:

f : Fam(Set)→ Fam(Set)



Well-foundedness

The repeated process of lazily computing canonical forms and
checking matching conditions must be well-founded. For example

c : N is only valid if the process of computing successive
canonical forms of c produces finitely many successors and ends
with a final matching 0 : N. (If we get an infinite sequence of
successors, then the judgment is not valid.)

c : WAB must generate a well-founded tree of matchings of
canonical forms. The root of the tree is the matching of
supab : WAB and the subtrees are matchings of the canonical
forms of a : A and of b x : WAB for each x : B a.

Well-foundedness is a non-trivial issue for the Mahlo universe. Cf
Palmgren’s paradox.



Justification of the rules

Meaning explanations express what the judgments of type theory
mean (Martin-Löf 1979).

Justification of the rules is a second step. It’s too much to ask for
absolute guarantees for the validity of the inference rules. But we
can still provide evidence why we believe they are correct.
Martin-Löf 1979:

But there are also certain limits to what verbal explana-
tions can do when it comes to justifying axioms and rules of
inference. In the end, everybody must understand for himself.

We may use any means at our disposal, e g mathematical model
building in set theory. When we justify the rules of type theory
with Set as a Mahlo universe it parallels the proof that the
set-theoretic model is a model of TTM.


