Predicativity of the Mahlo Universe in Type Theory

Peter Dybjer

joint work with Anton Setzer

TYPES Copenhagen, 10-14 June, 2024

K ロ ▶ K @ ▶ K 할 X X 할 X | 할 X 10 Q Q Q

Higher universes and inductive-recursive definitions

- The super-universe (Palmgren)
- The Mahlo universe (Setzer)
- General inductive-recursive definitions (Dybjer, Setzer)

Are they constructive in the sense of Martin-Löf 1979? Are they predicative in Martin-Löf's extended sense?

• Palmgren's paradox: adding a natural elimination rule for the Mahlo universe yields an inconsistency.

Martin-Löf type theory 1986

Two levels:

Theory of types (**LF**) Dependent type theory with dependent function types (*x* : σ) → τ, a type Set, and for each *A* : Set a type *A* of elements.

Theory of sets Constants for standard set formers Π , Σ , 0, 1, 2, N, W, Id, \dots and their introductory and eliminatory constants. Equations for the computation rules for eliminatory constants.

The theories **IR**,**IIRD** (Dybjer, Setzer 1999, etc) are based on **LF**. The theory **TT**^M of this talk is also based on **LF**.

A O A G A 4 O A C A G A 4 O A 4 O A C A

The external Mahlo universe Set

A super-universe is a universe closed under the next-universe operator

 $(-)^+$: Fam(Set) → Fam(Set)

Similarly, there are super-super-universes, etc.

A further generalization is to build universes $(U f_0 f_1, T f_0 f_1)$ closed under arbitrary family operators

$$
f: \mathrm{Fam}(\mathrm{Set}) \to \mathrm{Fam}(\mathrm{Set})
$$

This turns Set into a Mahlo universe with $(U f_0 f_1, T f_0 f_1)$ as subuniverses, where *f* is split into two components:

$$
\begin{array}{lcl} f_0 & : & (X_0: \mathsf{Set}) \rightarrow (X_0 \rightarrow \mathsf{Set}) \rightarrow \mathsf{Set} \\ f_1 & : & (X_0: \mathsf{Set}) \rightarrow (X_1: X_0 \rightarrow \mathsf{Set}) \rightarrow f_0 \, X_0 \, X_1 \rightarrow \mathsf{Set} \end{array}
$$

Subuniverses of Set in **LF**

Introduction rules for the codes (c_0, c_1) for the family operator (f_0, f_1) . We omit the arguments for the family operator *parameter*.

$$
\begin{array}{lcl}c_0 & : & (x_0:U\,f_0\,f_1) \rightarrow (T\,f_0\,f_1\,x_0 \rightarrow U\,f_0\,f_1)\\ & \rightarrow & U\,f_0\,f_1\\ c_1 & : & (x_0:U\,f_0\,f_1) \rightarrow (x_1:T\,f_0\,f_1\,x_0 \rightarrow U\,f_0\,f_1)\\ & \rightarrow & T\,f_0\,f_1\,(c_0\,x_0\,x_1) \rightarrow U\,f_0\,f_1\end{array}
$$

Equality rules:

$$
T f_0 f_1 (c_0 x_0 x_1) = f_0 (T f_0 f_1 x_0) ((T f_0 f_1) \circ x_1)
$$

\n
$$
T f_0 f_1 (c_1 x_0 x_1 t) = f_1 (T f_0 f_1 x_0) ((T f_0 f_1) \circ x_1) t
$$

We also have constructors for codes for the standard set formers. We call the resulting theory **TT**M.

Mahlo is predicative, after all

We suggest an answer to this question by

- building a "predicative" (inductively generated) model of TT^M in classical set theory (**ZFC**) extended with
	- a Mahlo cardinal M
	- \bullet and an inaccessible cardinal $I > M$
- providing meaning explanations for **TT**^M extending and slightly modifying those in Martin-Löf 1979.

Inductive definitions via rule sets (Aczel 1977)

A *rule* on a base set *U* is a pair of sets $u \subseteq U$ and $v \in U$ written

Let Φ be a set of rules on *U*. A set *w* ⊆ *U* is Φ*-closed* iff

$$
\frac{u}{v} \in \Phi \text{ and } u \subseteq w \text{ implies } v \in w.
$$

u v

There is a least Φ-closed set

$$
I(\Phi) = \bigcap \{ w \subseteq U \mid w \Phi-\text{closed}\},\
$$

KORKARYKERKE POLO

the set inductively defined by Φ. (An impredicative definition!)

Inductive definition of Tarski-style subuniverses $U t_0 t_1$ Let M be a Mahlo cardinal and

 $f: \mathcal{F}$ *am*(V_M) $\rightarrow \mathcal{F}$ *am*(V_M)

The Mahlo property implies that there is inaccessible κ*^f* < M such that *f* restricts to a function

$$
\mathcal{F} \textit{am}(V_{\kappa_f}) \to \textit{Fam}(V_{\kappa_f})
$$

The following rule set on $\rm V_{\kappa_f}\times V_{\kappa_f}$ inductively generates the graph of the decoding function $T f_0 f_1$ with domain $U f_0 f_1$:

$$
\left\{\frac{\{(x,X)\}\cup\{(yz,Yz)|z\in X\}}{(c_0xy,f_0XY)}\;|\;x,X\in V_{\kappa_f},y,Y:X\to V_{\kappa_f}\right\}\;\\ \left\{\frac{\{(x,X)\}\cup\{(yz,Yz)|z\in X\}}{(c_1xyt,f_1XYt)}\;|\;x,X\in V_{\kappa_f},y,Y:X\to V_{\kappa_f},t\in f_0XY\}\right\}\;\\ \vdots
$$

.

Inductive definition of the Mahlo universe *Set*

The following rule set on V_M inductively generates Set :

{ $\{f_0(Tf_0 f_1 x_0)((Tf_0 f_1) \circ x_1) | (x_0, x_1) \in \mathcal{F}$ am $(\mathcal{U} f_0 f_1)\}$ $\cup\,\{\mathit{f_1}\,(\mathcal{T}\,\mathit{f_0}\,\mathit{f_1}\,x_0)\,((\mathcal{T}\,\mathit{f_0}\,\mathit{f_1}) \circ x_1)\,t \mid (x_0,x_1) \in \mathcal{F} \,am(\,\mathcal{U}\,\mathit{f_0}\,\mathit{f_1}), t \in \mathit{f_0}\,(\mathcal{T}\,\mathit{f_0}\,\mathit{f_1}\,x_0)\,((\,\mathcal{T}\,\mathit{f_0}\,\mathit{f_1}) \circ x_1)\}\,$ U *f*₀ f_1 $| f : \mathcal{F}$ *am*(V_M) $\rightarrow \mathcal{F}$ *am*(V_M)} ∪ . . .

We add $U f_0 f_1$ to *Set* whenever we already know that *f* (family) composed with $T f_0 f_1$ yields a function

```
\mathcal{F}am(\mathcal{U}f<sub>0</sub> f<sub>1</sub>) \rightarrow \mathcal{F}am(\mathcal{S}et)
```
K ロ K K (日 K K B K X B K X B K K K K G K C K

This yields a model of **TT**M.

Meaning explanations for **TT**^M

We assume the canonical forms, computation rules, and matching conditions for the standard set formers (Martin-Löf 1979) adapted to the logical framework version (Martin-Löf 1986). We add:

• New canonical forms:

 $U f_0 f_1$

$$
c_0 \, a_0 \, a_1, c_1 \, a_0 \, a_1 \, b
$$

• New computation rules:

$$
T f_0 f_1 (c_0 x_0 x_1) = f_0 (T f_0 f_1 x_0) ((T f_0 f_1) \circ x_1)
$$

\n
$$
T f_0 f_1 (c_1 x_0 x_1 t) = f_1 (T f_0 f_1 x_0) ((T f_0 f_1) \circ x_1) t
$$

Matching conditions for $U f_0 f_1$: Set

This judgment is valid under the conditions that

$$
f_0(Tf_0f_1x_0)((Tf_0f_1)\circ x_1):\mathsf{Set}
$$

$$
f_1(Tf_0f_1x_0)((Tf_0f_1)\circ x_1)t:\mathsf{Set}
$$

in the context

 x_0 : U f_0 f_1 , x_1 : T f_0 f_1 x_0 \rightarrow U f_0 f_1 , t : f_0 (T f_0 f_1 x_0) ((T f_0 f_1) \circ x_1)

Note the difference between this condition and the assumption of U-formation:

 f : Fam(Set) \rightarrow Fam(Set)

Well-foundedness

The repeated process of lazily computing canonical forms and checking matching conditions must be well-founded. For example

- **c** c : N is only valid if the process of computing successive canonical forms of *c* produces finitely many successors and ends with a final matching $0: N$. (If we get an infinite sequence of successors, then the judgment is not valid.)
- *c* : W*AB* must generate a well-founded tree of matchings of canonical forms. The root of the tree is the matching of sup*a b* : W*AB* and the subtrees are matchings of the canonical forms of *a* : *A* and of *b x* : W*AB* for each *x* : *B a*.

A O A G A 4 O A C A G A 4 O A 4 O A C A

Well-foundedness is a non-trivial issue for the Mahlo universe. Cf Palmgren's paradox.

Justification of the rules

- *Meaning explanations* express what the judgments of type theory *mean* (Martin-Löf 1979).
- *Justification of the rules* is a *second step*. It's too much to ask for absolute guarantees for the validity of the inference rules. But we can still provide evidence why we believe they are correct. Martin-Löf 1979:

But there are also certain limits to what verbal explanations can do when it comes to justifying axioms and rules of inference. In the end, everybody must understand for himself.

We may use any means at our disposal, e g mathematical model building in set theory. When we justify the rules of type theory with Set as a Mahlo universe it parallels the proof that the set-theoretic model is a model of **TT**M.